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Inertial Taylor columns on a beta plane 

By MICHAEL S. McCARTNEY 
Woods Hole Oceanographic Institution 

(Received 14 January 1974 and in revised form 17 June 1974) 

The effect of variable Coriolis parameter on the formation of inertial Taylor 
columns is determined for the case of a two-layer fluid with moderate stratifica- 
tion. Analytic solutions of the inertial, quasi-geostrophic, /3-plane equations are 
obtained. As a special case, sohtions corresponding to a single-layer, homo- 
geneous fluid are also obtained. When both layer velocities are retrograde 
(westward), the effect of /? is to limit the horizontal extent of the disturbance due 
to the bump. When both layer velocities are prograde (eastward), an extensive 
meandering wake is found downstream of the bump. Associated with this wake 
can be large stationary cyclonic and anti-cyclonic eddies. The meander ampli- 
tudes in the two layers are typically nearly the same. I n  both the retrograde and 
prograde cases, the strength of the disturbance to the flow above the bump is less 
in the upper layer compared with the lower, indicating an attenuation in the 
vertical due to stratification. For a counter-flow situation, the solutions are 
complicated by the possibility of a stationary baroclinic wave, one that would 
exist even for /3 = 0. In  all the situations in which a meandering wake is formed, 
there is a wave-drag force on the bump. Some laboratory experiments corres- 
ponding to the single-layer solutions are described. 

1. Introduction 
Taylor columns have received much attention, both theoretical and experi- 

mental, since Hide (1961) speculated that Jupiter's Great Red Spot might be 
an example of one with a planetary length scale. Nearly all the theoretical works 
t,o date have been restricted to uniformly rotating systems (f plane), and thus 
to geophysical problems of rather small horizontal length scales: small enough 
that the latitudinal variation of Coriolis parameter does not affect the dynamics. 
For quite a few problems of interest (e.g. ocean currents flowing over seamounts, 
atmospheric winds flowing over mountains, or Jupiter's Great Red Spot), hori- 
zontal length scales are too large for this restriction to be made. In  the present 
work, the lowest-order effect of variable Coriolis parameter on Taylor-column 
formation will be examined by looking a t  the flow over a bump on a /3 plane. 

I n  the f-plane formulation, the full gamut of quasi-geostrophic problems has 
been considered. I n  table I, these problems and the present investigation are 
summarized. As the table indicates, the only previous worker who examined the 
effect of /3 was Ingersoll (1  969), who considered the limit 6 -+ co for a retrograde 
(westward) basic current in a homogeneous fluid. Hogg (1973) is the only author 
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Author 

Grace (1927) 
Stevvartson (1953, 

Jacobs (1964) 
1967) 

Ingersoll (1 969) 

Vaziri & Boyer 
(1971) 

McCartney (1972) 

Hogg (1973) 

Huppert (1974) 

McCartney (present 
work, including the 
material of 

System 

Homogeneous fluid 
f plane 

Homogeneous fluid 
f plane 

Homogeneous f l t i i t  I 
(i) f plane 
(ii) /I plane 

Homogeneous fluid 
f Plane 

Homogeneous fluid 
p plane 

Linearly stratified 
fluid 

(i) Homogeneous 
f Plane 

fluid 

Parameter 
Type of ranges 

quasi-geostrophy r--h- 7 

Time-dependent E = 0 E ,  = 0 
(initial-value h, = O(1) b = 0 

Viscous (hori- E = 0 Ea = 0 
problem) s = o  

zontal and h,  = O(1)  b = 0 
vertical) s = o  

lnertial € 4 1  Et  = 0 
ho = O(B)  
S = 0 

E N Et < 1 Ei = 0 

s=o  

ho = O(E)  
s = o  

(i) b = 0 
(ii) b --t cc 
(retrograde) 

Inertial with 
bottom friction ho = O(a) b = 0 

Inertial ~ < l  E * = O  
b < O(1)  

Inertial € 4 1  E * = O  
ho = O(E) 
s < O(1) 

& = O(F) 

b = 0 

Inertial €91 E b = O  
b = 0 

(ii) Linearly stratified 

f plane 

(i) X = 0 
fluid (ii) S < O(1)  

Two-layer stratified Inertial €41 E * = O  
fluid ho = O ( € )  b =s O(1) 

/3 plane s 3 O(1)  
McCartney (1972) as 
a special case) 

TABLE 1. Summary of theoretical Taylor-column studies 

thus far to publish results for a stratified fluid (see Huppert (1974) for a discussion 
of Hogg’s work); and his results are for an f plane. 

The specific model considered in the present work is that of a two-layer fluid 
on a ,8 plane. The basic geometry is shown in figure 1. The Coriolis parameter 

Y is the poleward co-ordinate. The following non-dimensional parameters are 
of significance: 

f ( Y )  =f(O)+PY =fo+PY. 

E U,/(foL), E, llv/(foH2), E,  vJ( foH2) ,  
b /3L2/Uo = PL/( foe), ha hi/H,  

S E H / L ,  S = gHAp/( f Epo L2) = S2hrz/f  El  
d = d‘/H. 

e is a Rossby number. E, and E, are respectively the vertical and horizontal 
Elcman numbers. b is a measure of the dynamic importance of ,8, small b (< 1) 
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FIGURE 1. System geometry. (a )  East-west section along Y = 0. __ , undisturbed 
interface; ---- , disturbed interface. ( b )  Top view. Y is the poleward co-ordinate. 

implying, in some sense, that p effects are unimportant. h, is the maximum 
fractional height of the isolated topographic feature h'(3,  Y ) .  6 is the ratio of 
the total fluid depth H to the horizontal scale L of the bump. S is a measure of 
the dynamic importance of the stratification, small S (4 1) implying, in some 
sense, that stratification can be neglected. d is a measure of the lower-layer depth 
fraction. In  these definitions the following quantities are used: v, and i j h  are, 
respectively, the vertical and horizontal kinematic eddy-viscosity coefficients ; 
U, = [d42, + (1 - d )  %$is an r.m.5. scalingvelocity, based on the upper- and lower- 
layer typical velocities 4Y2 and %1, respectively; hr2 = gAp/ (p ,H)  is the Brunt- 
Vaisda frequency squared, based on the average density po = dp, + (1 - d)p2,  
gravity g and the density difference A p  = p1 -p2;  d' is the interface height above 
the bottom at Y = 0, when there is no bump. The interface height Z,, is written 
as Z,, = d f + f ( x ,  y ) ,  with f(x, 0 )  = 0, when there is no bump. The velocities far 
from the bump in each layer are uniform and zonal with magnitudes e2 and a1. 

The parameter ranges considered in the previous works, and in the present, 
are included in the summary in table 1. Those authors who have the entries 
EB = 0 retained neither vertical nor horizontal friction, while Jacobs (1964) had 

In $ 2  the governing equations for the two layers are reduced to a single 
E, = E,  = E. 
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manageable equation. I n  $ 3 the general character of the solutions to this equa- 
tion is discussed. The simplest solutions, those for < 0 and CP2 < 0 (i.e. west- 
ward currents: retrograde), are described in $ 4. I n  $ 5  the more complex solutions, 
those for > 0 and @2 > 0 (i.e. eastward currents: prograde), are described. In  
both $4 and 3 5, solutions corresponding to a single-layer homogeneous fluid are 
obtained by taking the limit S+m,  in which the interface acts as a horizontal 
rigid lid. Some laboratory experimental results, related to the homogeneous fluid 
case, are described in $ 6. The relationship between these theoretical and experi- 
mental results and some oceanic situations is discussed in $ 7 .  

2. Governing equations for the two layers 
We adopt the following non-dimensionalization scheme: horizontal lengths are 

scaled by L, vertical lengths by H ,  yielding the non-dimensional co-ordinates 
x, y, z. Horizontal velocities are scaled by Uo, as defined in $ 1 ,  and the vertical 
velocity by UoS, yielding the non-dimensional velocity vector in the i th layer 
qi = (ui, vi, wi), i = 1 , 2  for lower and upper layer, respectively. Far from the 
bump, the velocity vectors are q, = ( Ui, 0 , O ) .  Non-dimensional dynamic pressures 
p 1  and p 2  are introduced by 

(2.1) 

I n  terms of these variables, and the parameters introduced in 3 1,  the equations 
of motion are 

1 P2 = ~ ~ 2 - ~ 2 ~ ~ ~ ~ - ~ ~ 1 / ~ ~ 0 ~ 0 f 0 ~ ~ ~  

131 = [ G - P 2 @ ( 1 - 4  - P l g H ( d - z ) l l ( f o ~ i , f o ~ ) .  

(2.2) i €9,. vui - (1  +"by) Vi  = - (p i ) ,  + 6'EhV;Ui + Eu(Ui)zz, 
cqi .  V V ~  + (1 + €by)  U$ = - (p i )g  + 62EhVi~i  + E,(v~) ,~ ,  
ss2qi. vwi = - (pi), + a4Eh vi Wi + 82EU(tUi)zz, 

v.q, = 0, 

where V i  is the horizontal Laplacian operator, and V is the three-dimensional 
gradient operator. 

The non-dimensional interface height is 

Zin = n + 7. (2.3) 

Requiring the pressures PI and P2, ( 2 .  l),  to be equal at theinterface gives a relation 
between 7 and the individual layer dynamic pressures : 

7 = - 4PZ - P J P .  (2.4) 

We note, in passing, that, for the present work, S is considered to be 3 O(1). 
Thus, by (2.4),  7 < O(e).  At the interface, the condition that the interface be a 
material surface relates the total vertical velocities in each layer to the interface 
displacements : 

wi = u,(7),+vi(q), a t  x = d + y .  (2.5) 
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We are considering the parameter range 

For this range, the viscous terms in (2.2) can be dropped, and the dependent 
variables expanded in power series in the Rossby number s, e.g. 

ui = u p  + s1uy + s2up  + . . . , 

v p  ( p y ) z ,  up = - (P\o’)g> 0 = (P$09z, 
(u$o))z + ( v \ q y  + ( t L p ) z  = 0; 

q ( 0 ’ .  VuiO) - $) - byv$O’ = - (PP).Z, 

qp. Vuy’ + @) + byu‘,0’ = - (PP’) y’ 

62q‘iO). V@’ = - (P\l))z, 
(u$lyz + (v$l))u + ( u p ) z  = 0. 

giving the sequence of equations: order €0, 

(2.6) 1 
(2.7) 

(2.8) 

I order sl, 

Equation (2.6) implies that the lowest-order velocities in each layer are inde- 
pendent of the vertical co-ordinate: 

(up)z = (V‘P’) = (zc(9’) 2 2  = 0. a z  

Hence do) is zero (for h = 0(s)), and pio) is the stream function for the order-@ 
horizontal velocity field. 

From (2.7) and (3.8), an equation for the lowest-order vorticity <LoJ can be 
derived : q\o’.V[~~o’+by] = (w!?))~,  <io’ = VEp:’). (2.9) 
At the top and bottom, 

(3.10) 

where h/c is assumed to be an O( 1) quantity. The vertical velocities a t  the inter- 
face are given by (3.5), which, to this order, is applied at 2 = d,  since ?] is, by (2.4) 
with S > 0(1), an order-s quantity. Since qi0) and <:O) are independent of z ,  (2.9) 
shows that (z~jt1))~ is independent of z .  Using the top, bottom, and interface vertical 
velocities ((2.10) and (2.4)), we obtain 

= - q y .  v 

(wp’), = - qp). v 
Hence (3.11) become, dropping superscripts ( 0 ) ,  

(2.11) 

(2.12) 
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The first two of (2.12) imply that the bracketed quantities are functions of the 
stream functions p1 and p 2  alone, respectively. Letting the approaching flows be 

Pi+Pi,rn = - q y ,  
noting that d U t  + (1 - d )  Ug = 1, and letting 

(2.13) 

the following equations for Qi and are obtained from (2.12) : 

(2.15) 

6 = ($1 - Q2)IS. 
Elimination of 6 gives 

Equations (2.16) are two coupled second-order linear partial differential equa- 
tions for Q1 and Q2. Elimination of Q1 gives a single fourth-order equation for #2: 

(2.17) b U2 1 b U2 1 $2 = h [ ” -t u, - [ ” + q- m S ]  ”- d( 1 - d ) S 2  d( 1 - d )  E X *  

Equation (2.17) is to be solved for a specified function h(r, 0) and subject to the 
boundary conditions 

Q2 bounded everywhere, Q2 -+ 0 far from bump. (2.18) 

For some ranges of values of the parameters b, S, d, U, and U,, (2.17) assumes a 
wavelike character; and (2.18) are insufficient to determine a solution uniquely. 
When this occurs, a condition must be added of the form 

r+$,-+O ‘upstream’. (2.19) 

What is ‘upstream ’ is determined by considering the linearized time-dependent 
equations analogous to  (2.12), and calculating the phase velocity and group 
velocity of plane wave solutions. Requiring stationarity gives the group velocity 
corresponding to  the wavy solutions of (2.15). The ‘upstream’ in (2.18) is the 
direction opposite to  the group velocity direction for the wave. This will be 
discussed in more detail in 4 3. 

To simplify notation, introduce the quantities 

(2.20) 
b U 1  b U, 1 1 N - --+2- N2 = --+-- ‘- U, U,dS’ U2 U2( l -d )S ’  N3 = d ( 1 - d ) S 2 ’  
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Attention will be restricted to the right circular cylindrical bump 

(2.22) 

The generalization to more complex bumps is direct, but yields no additional 
phenomenon of interest. 

Anticipating that closed streamlines may occur in the flow field for sufficiently 
large values of hole, the steps from (2.12) to (2.15) then break down, since the 
streamlines within the outermost closed streamline no longer originate upstream. 
Ingersoll(l969) argued that the ultimate state of anf-plane Taylor column must 
be stagnation (i.e. the Ekman suction term, however small, eventually kills off 
the interior motion, making the closed streamline defining the Taylor column 
a zero velocity line: Vpi = 0) .  I n  the examples of solutions to (2.21) that are to 
be given here, it will not be possible to apply such a boundary condition. Indeed, 
for most oceanic and atmospheric situations, such solutions would correspond to 
very long times, and fail to be of much interest. For times short compared with 
the viscous time scale, the effects of viscosity should be negligible, and solutions 
to (2.21) should be indicative of those that would be obtained by solving the 
initial-value problem corresponding to the time-dependent analogues of (2.12). 

3. Discussion of the general solution 
The solution to  the problem defined by (2.21)) (2.22)) (2.18) and (2.19) is 

obtained as follows. The domain is divided into two regions: r < 1 and r > 1. In  
each region 4, is expressed as a Fourier series in 0. The nth equation thus obtained 
has four homogeneous solutions: P,(klr), Q,(k1r), P,(k,r) and &,(k2r). P, is a 
Bessel function of the first kind, nth order (ordinary if argument is real, hyper- 
bolic if argument is imaginary). &, is the corresponding Bessel function of the 
second kind. The constants k, and k, are given by 

(3.1) ki = - + ( N l + N z ) - & [ ( N l - N 2 ) 2 + 4 N 3 ] ~ .  

There are four distinct cases determined by the magnitudes and signs of N,, N, 
and N3. These are summarized in table 2. By definition, 

1 k2 1 - - -1 2(N1+N2)+:[(Ni-N2)2f4N31t, 

b [ b-  dC;+(1 -d )u2] .  
d ( l  - d ) S  

N1N2-N -- 
- U1Uz 

Thus case (i) includes all those situations with both currents retrograde (U, < 0 
and U2 < 0) .  

When both currents are prograde, there will always be a t  least one wavy mode. 
This is easily seen from (3.2).  To get case (i) would require 

1 1 
"+" < b d ( l - d ) S < d U l + ( 1 - d ) U 2  
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(i) Two evanescent > o  > o  < o  < o  
(ii) Two wavy < o  > o  > o  > o  
(iii) One evanescent, one wavy > 0 < o  > o  < o  
(iv) One evanescent, one wavy < 0 < o  > o  < o  
TABLE 2. Summary of character of fundamental solutions for different values 

of Nl + N, and of Nl N, - N3 

Ul+V,  dU1+(1--d) uz Ul uz 
< o  < o  < o  < o  
> o  > o  > o  > o  
< o  > o  > o  > o  

> o  < o  
< o  < o  

> o  < o  > o  > o  
< o  > o  
< o  < o  

Cases occurring 

(i) 
(ii), (iii) or (iv) 
(ii), (iii) or (iv) 
(iii) or (iv) 
(iv) 
(ii), (iii) or (iv) 
(ii) or (iv) 
(iv) 

TABLE 3. Summary of different cases occurring for different values of the 
two layer velocities 

or, since dU2,+( l -d )  U i  = 1, 
U,U, < 0. 

This is impossible for U, > 0, U, > 0. If all quantit,ies except b are fixed, and both 
velocities are prograde, then, as b is increased from zero (by varying UJ,  the 
sequence of cases is (iii), (iv), (ii). If all quantities except S are fixed, and both 
velocities are prograde, then, as S is increased, the same sequence of cases occurs. 

When the lower layer is retrograde and the upper prograde, or vice versa, there 
will always be a t  least one wavy mode. Which cases occur depends on the signs 
of the velocity sum, Ul+ U,, and the volume flux, dU, + (1 - d )  U,. The various 
possibilities are summarized in table 3 for the situation d > 0.5. 

The determination of the appropriate 'upstream' condition for a wavy mode 
goes as follows. Plane wave solutions (form Cexp[iaix-iwit]) of the time- 
dependent linearized equations analogous to (2.12) are examined. The equation 
for ai and wi thus obtained is 

w;a$ + wiai[E<Nl + 17, N2 + a;( U, + U,)] 

+ U, U,[(N, + 01:) (N, + a:) - N3] = 0. (3.3) 

Stationarity, wi = 0,  gives a; = k;, where the kt are given by (3.1). Differentiation 
of (3.3) with respect to ai gives an equation for the corresponding group velocity 
cg, i  = When wi = 0 and a; = k: are substituted, this is 

3 1  - N2 ) I 1 ,  (3.4) 4- N2 ) "(' ' [ (N, - N,), + 4N3]: .( ( [(N,-N2)2+4N3]* 
c , ~ , ~  = 4U U U, 1 T 

where upper signs correspond to k2, and lower signs to hi. 
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When both velocities are prograde, cgPi is always greater than zero. Hence 
'upstream' is to the west, as in the homogeneous case. When one of the counter- 
flow situations occurs, will be positive onIy if 

(3.5) N1- N, N1- N2 "(" [ (Nl-N2)2+4N3]t  + '' ( ' [ ( Nl - N,),  + 4N3] t ) < '* 

There will be situations in which (3.5) is violated. Hence the counter-flow situa- 
tions must be evaluated individually. 

The pure retrograde and pure prograde situations will be discussed in 9 9 4 and 5. 
The possibility of baroclinic instability, either of the basic approaching flow, or 
induced by the interaction with the bump, will not be considered here. For the 
basic flow field considered here, Pedlosky (1964, (3.2.9)) showed that the neces- 
sary and sufficient condition for stability is the following constraint on the 
vertical shear (in the present notation) : 

U2- U, < bdX. (3.6) 
The right-hand side of (3.6) is independent of the horizontal length scale L. No 
attempt to force the parameters of the specific examples in the following sections 
to satisfy (3.6) will be made. Nor will any attempt be made to determine whether 
interaction with the bump will cause instabilities. 

4. SoIutions for two retrograde currents 
I n  $ 3  we found that, when both currents are retrograde, the fundamental 

solutions to (2.21) are evanescent in character. The solution for q5, is in this case 
independent of 0 (polar co-ordinates), and is 

with k4 and k; given by (3.1), and where 

is the particular integral of the governing equation (2.21) corresponding to the 
height distribution (2.32). The other constants (A,, B,, C, and Do) are obtained by 
requiring that $2 and its first three radial derivatives be continuous a t  r = 1.  
The expressions for the constants are very complicated, and will not be given here. 

From q52, q51 and are computed from the second of (2.16) and the third of 
(3.15), respectively: 

F, = [N1N,-N3]-l (4.2) 

I h, + k2,1Io[ I kil*r] + Bo"2 + I,[ I $,I+ N2Fo (r  < I), 
( r  ' I) ,  

4 - - (  - de C0[N2 + k'3 KO[ 1 k2,[hr]Do+ [N, + kE]K0[lkE[6r] 
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+ 5.0 

+ 4.0 

+ 3.0 

+ 2.0 

! 

-5.0 

-6.n 

FIGURE 2. Lower-layer streamlines for retrograde (westward) flow past a right circular 
cylindrical bump (----). Ib/V,l = 1.0, S --f to, hJ(da)  = 6.0. Lower layer behaves as 
though it were a single layer, with a rigid lid a t  z = d. 

The actual interface displacement 7 is given by 

7 = aAu2 - U,)/S + 51, (4.4) 

and for U, < 0 and U2 < 0, kt < 0 and ?ci < 0. 

First, let S+m.  Then 
The character of these solutions is clarified by considering two limiting cases. 

N1+ - b/U,, N2 -+ - b/U2, N3+ 0. 

Hence ki++b/U,,  k:-++b/U, (U, < 0, U2 < 0). 

where A; = - ( -  Ul/b)*Kl ( -  U,/b)*, 

C; = + ( - U,/b)*l, ( - U,/b)* and F; = ( - U,/b). 

The lower layer behaves as though the interface is a rigid lid. Thus the expression 
for 4, in (4.5) is identical to that which would result from solving the equations 
corresponding to a single homogeneous layer of thickness d and approaching 
flow velocity U,. 

Ingersoll’s (1969) f-plane, homogeneous fluid result can be obtained from (4.5) 
by letting - b/U,+ 0, and restricting the arguments of the Bessel functions: 
( - b/U,)*r << 1. This gives 

( 4 . 6 ~ )  
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7.0 

6.0 

2.0 

0 

FIGURE 3. Minimum obstacle height giving a Taylor column in the lower layer 
for the limit S .+ co, for a right circular cylindrical bump. 

But, for r sufficiently large, ( - b/Ul))r % 1, and 

(4.6b) 

indicating an exponentially decaying disturbance. Thus, whereas the natural 
logarithm in Ingersoll's solution, (4.6 a), implies that streamlines climb to larger 
and larger values of y as r increases, (4.6 6) shows that eventually /3 comes into 
play and limits the radial extent of the disturbance. This is evident in figure 2, 
where streamlines corresponding to the S-t 00 solution, (4.5), with ( - b/Ul) = 1.0, 
h,/(dc) = 6.0 are shown. The flow deflects to the left (to the right in southern 
hemisphere) and accelerates as it passes the bump, with maximum velocities of 
the order of 3U1. The associated (anti-cyclonic) circulation rl is 

which, for b < 1, gives rl z -nh,/s (i.e. Ingersoll's (1969) result). For b B 1, it 
gives rl + - rho/(€( - b/q)$). In  the figure, the Taylor column is well developed. 
The value of h, necessary to force a Taylor column (ho)c is easily found from (4.5) 
by looking for the minimum value that gives a stagnation point, Vpl = 0. The 
calculation gives 

This function is plotted in figure 3. For b < 1, (hole), = 2d, while, for b $ 1, 
(h,/4, = UlWl(( - b/Ul)*) Kl(( - b/UlP)- (4.8) 

(ho/€)c = 2( -b/U,)*d. 
6 P L M  68 



82 M .  8. McCartney 

Then 
The last limiting case is when the two velocities are equal: C< = US, = - 1. 

k2, = -b ,  ki = - b - ( d ( I - d ) S ) - ' .  

& is given by (4.1), while 41, and ( are 

Thus the k, mode is, in this case, barotropic in nature (i.e. it has the same magni- 
tude in each layer). The contributions to and @2 by the k ,  mode are of opposite 
sign, and unequal magnitude. 

The streamlines for the general case ((4.1) and (4.3)) are similar in character 
to those shown in figure 2 for the special case X + W .  In  general, stratification 
attenuates the disturbance due to the bump in the upper layer. Hogg (1973) 
obtained a similar result for a linearly-stratified f-plane system. The limiting 
cases described above show that the k, mode is in general a modification of the 
solution for a single layer of homogeneous fluid. The k2 mode reflects the system's 
stratification, and vanishes when the fluid is homogeneous. 

5. Solutions for two prograde currents 
We recall from table 3 that, when both U, and U, are greater than zero, there 

can be either one wavy and one evanescent solution or two wavy solutions. Also, 
we found in 3 3 that the appropriate additional boundary condition for the wavy 
solution(s) was no waves upstream (to the west): 

rt@,+O a t  x+-w. (5.1) 

We shall present the solution corresponding to case (iii) (i.e. k2, > 0 and ki < 0). 
The solution is obtained by the same procedure as w a s  used in § 4. The boundary 
condition indicated in (5 .  I )  is applied as follows. I n  the Fourier series represen- 
tation of #,, the asymptotic expressions for the various Bessel functions are 
introduced. The condition in (5.1) then implies that certain infinite sums of 
coefficients and trigonometric functions vanish for i n  < 0 < $ 7 ~ .  Fourier series 
theory is then used to obtain unique values for the coefficients involved. The 
details are similar to (although somewhat simpler than) the construction of 
lee wave functions described by Miles & Huppert (1968). They are described 
in McCartney (1 972). 
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The solution thus obtained is 

where 

with F, = I/", N, - N3],  and A,, B,, C, and Do constants determined by matching 
a t r =  1 ,as in  94. 

To obtain q51 and 5, we use the second of (2.16) and the third of (2.15), 
respectively, giving 

with the actual interface displacement 7 given by (4.4). 

For X+m, 
The limiting cases examined in 3 4 can also be looked a t  for the present solution. 

.iVl + - b/Ul, N2+ - b/U2, N3+ 0.  

Hence k:++b/Cjl, k2,++b/U2 (U, > 0, U2 > 0). 

Thus, q 5 2 + 0 ,  t+o ,  

where 

A' , - - -1 2n( Ul/b)SYl( Ul/b)*, CA = - Ul/b)tJl( U,/b)*, FA = - (Ul/b). 

As in the same limit in 3 4, the interface acts as a rigid lid, and the q51 solution 
in (5.4) is identical to that which would result from solving the single homo- 
geneous layer problem. The details of Ingersoll's (1969) f-plane solution can 
again be recovered by taking the limit b/Ul + 0. 

6-2 
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1- 6.0 

FIG~RES 4(a) and ( b ) .  For legend see facing page. 

The solution given in (5.4) includes a rather extensive meandering wake down- 
streamofthe bump. Infigure 4, streamlines corresponding to (5.4) with b/U, = 1.0, 
and three values of h,/(ds) (viz. 2.0, 4.0 and 6.0) are shown. Even for h,/(ed) = 2.0 
(figure 4a)  the meandering wake has a north-south peak-to-peak amplitude of 
about 2 .  Over the bump, the deflexion is again to the left; but the anti-cyclonic 
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- 6.0 

-4.0 

- 1.0 

+1.0 

+ 5.0 

FIGURE 4. Lower-layer streamlines for prograde (eastward) flow past a right circular 
cylindrical bump (----). Lower layer behaves as though it were a single layer, with a rigid 
lid at z = d. Ib/U,l = 1.0, S + co. 

(4 ( b )  (4 
ho/(de) 2.0 4.0 6.0 

Taylor column is shifted towards the front of the bump. The circulation around 

(5 .5 )  

which is negative for the example, but in general can have either sign. There is 
not, in general, a simple expression for the minimum height (h,), analogous to 
(4.8) for the retrograde flow. For the example, the critical value of h,/(ds) is 
between 2.0 and 4.0. To the east-poleward side of the bump, there is a large 
cyclonic loop, which, by ho/(ds) = 6.0, has pinched off, forming a cyclonic eddy. 
The anti-cyclonic meander to the east-equatorward side of the bump will also 
close, forming an anti-cyclonic eddy, for a still larger value of h,. As h, is increased 
still farther, additional eddies will form in the wake. In addition to these slow 
regions, the wake also exhibits an alternate jet character. In  figure 4 ( b ) ,  for 
example, to the east-equatorward side of the bump, at about r = 3, there is an 
east-poleward directed jet with velocities of the order of 3U1. 

Recalling that the streamlines are constant-pressure lines, it is evident from 
figure 4 that there is a downstream force D on the bump: a wave drag. This is 
easily calculated by integrating the pressure distribution around r = 1. Using q51 
from (5.4)) we obtain a drag coefficient 
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7 0 I - 4 5 6 7 

( + b / W  
FIGURE 5. Drag coefficient for the limit S + m. 

This is plotted in figure 5, as a function of (b/U,)t. For comparison, the Ekman 
drag on a circular area of radius L on an infinite plane, with a current of magni- 
tude U, flowing over it, has the drag coefficient 

Of course, since we assumed E 9 E;, the wave drag is thus much greater than 
any possible viscous drag contribution. 

The wave drag vanishes at  the zeros of J,(b/U,)$. The streamlines corresponding 
to the first two zeros are shown in figure 6. We see that a resonance phenomenon 
is occurring: there is no disturbance outside the bump, and an integral number of 
waves over the bump. This occurs because of the particular h(r)  we used. But it 
can occur for more general choices of h(r), when certain integrals of h(r) and 
Bessel functions vanish. The particular values of h, in figure 6 are those that first 
give a stagnation point over the bump. The location of the point is indicated 
by a cross. 

The second limit is when U, = U. = + 1. The k, mode becomes barotropic in 
nature, just as in the corresponding retrograde solution limit (see discussion 
of (4.7)).  The interface does not, for this limit, have a wavy character (i.e. in 
5 the lc, contribution is zero). 
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FIGURE 6. Lower-layer streamlines for prograde (eastward) flow past a right rircular 
cylindrical bump (----), for the values of Ib/U,l that correspond to the first two zeros of 
the Bessel function J1, and t,hose of h,/(de) that just cause a stagnation point ( + ). 

I b/Ul I h o w )  
(4 14.86 2.65 
fb) 49.1 3.61 

Results for a specific example of the general prograde solution ((5.2) and (5.3)) 
are presented. The various parameters of the problem are given the values 

H = 5 km, L = 50 km, d = Oms, 

Aplp = 10-3, f,, = 10-4s-1, p = 1.57 x (cm s-l), 

%, = 10ems-1, +Y2 = 20cms-1. 

The /3 value corresponds to latitude 45" and a planetary radius of 6370 km. These 
give the dimensionless parameters 

e = 0.0253, b = 0.3099, Ul = 0.791, U2 = 1.581, X = 1.96, 
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FIGURES 7(a) and (b). For legend see facing page. 

for which k, = 0.5457 and ( -  k$ = 1.5036. The constants in (5.2) are then 

A, = + 1.537, B, = + 0.07173, C, = - 0.2957, 
Do = - 0.2561, F, = - 1.4856. 

For a bump height of 760m, hole = 6-0. The streamlines and interface contours 
corresponding to these parameters are shown in figure 7. Comparison of the 
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FIGURE 7. Streamlines and interface contours for b = 0.3099, S = 1.96, U, = 0.791, 
U, = 1.581 and hole = 6.0. (a)  Lower-layer streamlines. ( b )  Upper-layer streamlines. 
( c )  Interface contours. 

streamlines for the two layers shows that the disturbance over the bump is 
weaker in the upper layer, agreeing with Hogg’s (1973) result for continuous 
stratification on an f plane. But, away from the bump, the meandering wake is 
of nearly the same amplitude in both layers. In  the far wake downstream, we 
have (by substitution of the asymptotic forms of all the Bessel functions) 

Thus the asymptotic ratio of lower-layer disturbance to upper-layer disturbance is 

For the example, this number is 0.54, or very nearly UJU, = 0.50, hence the 
asymptotic similarity of the streamlines. This near equality is due to the smallness 
of b ;  because, for b < 1 ,  kf < 1 .  Hence, 

$1/$2 = “2+k2,1 (1-48. (5 .8)  

N2+ k2, II N2 N q- Ul 1 $1 5 
( 1 - d ) X ’  - U,’ 

Retention of the lowest-order terms in b gives 

indicating, for U, > U,, a ratio larger than Ul/U2. 
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Returning to figure 7, in the upper layer the disturbance over the bump is 
relatively weaker. There is a small Taylor column in the slow region on the 
upstream equatorward side of the bump. The maximum flow acceleration occurs 
to the north-east and is a factor of about 3, compared with about 6 or 7 for the 
lower layer. At a radial distance of about 4L (200 km) to the north-east, in both 
layers, there is a cyclonic meander that is a general characteristic of the prograde 
solutions. I ts  strength is somewhat less in theupper layer. TO the south-east, there 
is accelerated flow a t  a radial distance of 6L (300 km), with the flow velocity 
about doubled and directed towards the north-east. The maximum north-south 
meander amplitude is about 8L (400km) in the lower and 7L (350km) in the 
upper layer. For a larger value of hole, additional closed eddies occur: for 
hole = 8.0 (1013 m), there is a cyclonic eddy to the north-east in the lower layer, 
while for hole = 10.0 (1267 m) it occurs in both layers. 

The interface contours, figure 1 (c), are geometrically similar to the streamlines, 
except right over the bump. Associated with a cyclonic meander is a locally raised 
interface, while associated with an anti-cyclonic meander is a locally depressed 
interface. For cases when a cyclonic eddy occurs, there can be an associated 
closed interface contour, indicating a domed interface within the cyclonic eddy. 
For a sufficiently tall bump, an anti-cyclonic eddy can form to the south-east, 
with an associated closed interface contour indicating a depressed interface 
within the anti-cyclonic eddy. 

These trends continue as ha/€ is further increased. For sufficiently large hole, the 
domed interface can surface, a t  which point the analysis breaks down, unless the 
governing equations are constrained to - 0.8 < 7 < + 0.2. This is because there 
is a limit to how much a fluid column in either layer can be stretched, Once the 
interface surfaces, the surface streamlines correspond to a cyclonic current ring 
with a slower cold (lower layer) core. 

The asymptotic wavelength h associated with the wavy part of (5.2) is 

h = 271L/k,, 

which for the example works out a t  about 575 km. 
A last piece of information is the wave drag D on the bump due to the wake. 

Again this is expressed by a drag coefficient cD calculated from integration of 
the pressure distribution on the bump surface. The calculation yields 

For the example, this coefficient is 0.0406, giving an actual drag of 0.643 x 1016 
dynes. If this were a wind-driven current, with a surface stress of say 2 dynes cm-2 
driving it, then the wave drag would be sufficient to balance the surface force on 
a square of side about 570 km. 

6. Experiments related to the single-layer problem 
Some pertinent experimental work was done by Fultz & Long (1951), Long 

(1953), Frenzen (1955) and Fultz & Frenzen (1955). Their basic apparatus was 
a hemispherical annulus, within which an obstacle could be moved along a 
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latitude circle. Most of the work was concerned with obstacles that completely 
filled the gap height. But Long (1952) reported results for a circular obstacle 
(10" angular radius), which was a half-gap width high. In  terms of the parameters 
of the present work, with C< = d = 1, the sample photograph Long presented (his 
figure 11) corresponds to e = 0.29, b = 0.612, ho/e = 1.75, and prograde flow. 
His photograph closely resembles the present figure 4 (a )  (b = I and ho/e = 2.0), 
with the slowest flow shifted towards the front of the obstacle, anti-cyclonic 
circulation around the bump, and the largest deflexion equatorward of the 
streamlines in the wake occurring a t  approximately 2 to 24 obstacle radii (from 
figure 4 (a) ,  the corresponding length is just over 2 for b = 1). For retrograde flow, 
he reported that there was anti-cyclonic circulation about the obstacle, but that 
". . .this has little effect on the motion in the rest of the hemispherical shell". 
It is not clear from this statement whether he means that there was only a small 
disturbanceawayfrom theobstacle (asthepresenttheory would predict (figure 2))) 
or that the flow field was similar to that for the full cylindrical obstacle, which 
he described as having a blocked zone moving at the speed of the obstacle, with 
stagnant fluid outside the latitude zone of the obstacle. 

To clarify this point, and to examine the experimental features, a set of experi- 
ments was run. The apparatus used was a large (1 m radius) rotating table, around 
which various small obstacles could be towed along constant radius curves. Since 
the fluid surface was free (parabolic), the effective p was a function of R. Hence 
any comparisons with the present theory are only approximate (i.e. only valid in 
a band of limited radial extent). Flow visualization was achieved by attaching 
a number of conducting wires to the obstacle support arm, and using the Baker 
(1966) thymol dye technique. 

Figure 8 (plates I and 2) shows photographs of the prograde flow field for 
E = 0.10, h/e = 3-0, b = 0.504 and EB = 2.9 x lop2. The obstacle is moving by 
the camera. Figure S(a )  (plate 1) shows the flow over the disk, and indicates 
excellent qualitative agreement with the theory (no theoretical streamlines were 
computed for b = 0.5). The wriggling of the dye lines was caused by the small 
f ikmtin vortex streets behind the dye wires. This has the effect of oscillating 
the effective radial dye release location and, owing to the divergence of stream- 
lines in the slow flow regions, making the flow within the slow regions appear 
irregular. 

Figure 8 ( b )  (plate 2) shows more of the wake, showing the meander amplitude 
to be of the order of L, and that the maximum streamline deflexion occurs at 
approximately 2.5-3 times L. From figure 4 (a) ,  for b = 1.0 the corresponding 
number is 3.1 times L;  and, for smaller b, we should get a value somewhat greater 
than this, agreeing with the observation. The crowding of the lower 6 streamlines 
in the wake is caused by the dye wires for those 6 lines being located in a relatively 
stagnant region: from the spacings, the velocities to the south-west of the disk 
are about 4 to 4 of their value in the first meander in the wake. This, too, is in 
good agreement with figure 4 (a) .  

In  figure 9 (plate 3) a case is shown for which e = 0.07, b = 1-1, h/e = 5.3 
and E4 = 3.2 x There is a cyclonic eddy to the north-east at a radius of 
about 2L, in good agreement with figure 4 (e). The flow in the slow region over 
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the disk is rather irregular, being influenced by viscosity and the support 
shaft. 

For retrograde flows, two distinct regimes were observed. For relatively short 
obstacles, the streamlines were similar to those shown in figure 2, with some 
east-west asymmetry due to viscous drag. For taller obstacles, the flow was no 
longer stationary. Instead, the latitudinal band that the obstacle traversed 
blocked, with the fluid in the band moving with the obstacle, and the fluid 
outside the band being nearly stagnant. Superimposed on the shear layers a t  the 
edges of the band were large vortices, moving a t  some intermediate speed. The 
blocked region can be explained by Rossby wave theory: the linearized time- 
dependent equations of motion on cz P plane have a wavy solution, which has 
westward group velocity and zero x wavenumber (see Lighthill 1967). The 
resultant shear layers are unstable, and could roll up into the observed vortices. 
Why this blocking does not occur all the time is under investigation. It may be 
related to  the minimum height ( I L , ) ~  for formation of a Taylor column: if 
h, < (h,),, the fluid can flow freely over the bump, and perhaps then the necessary 
forcing for the blocked flow does not occur. 

The prograde flow experiments show excellent qualitative agreement with the 
theory of 3 5. An important conclusion is that  the use of the rsq5 -+ 0 upstream 
condition in the theory seems justified: the meandering wakes were found on the 
downstream side in all cases. It would be of interest to do more quantitative 
experiments, with the following aims: to  make a detaiIed comparison with 
theory (critical height for Taylor-column formation, and meander amplitudes) ; 
to  determine when the meandering wakes are stable; to  determine when the 
embedded eddies in the wake are stable (e.g. are there situations in which these 
eddies get swept downstream?); to determine the effect of time dependence 
(e.g. slowly varying the translation speed of the bump). Further work on time- 
dependent vortex shedding would also be of interest. Some of these things are 
under investigation by the author a t  the Woods Hole Oceanographic Institution. 

7. Conclusions and geophysical implications 
The effect of variable Coriolis parameter on inertial-Taylor-column formation 

has been determined for a two-layer stratified fluid on a P plane. A special case 
of the solutions obtained corresponds to Taylor-column formation in a single- 
layer fluid: the P-plane extension of Ingersoll’s (1969) study. The solutions for 
this special case have the following features. 

(i) The pronounced cross-stream asymmetry of the flow streamlines found by 
Ingersoll (1969) also occurs on the P plane (figures 2, 4). I n  Ingersoll’s case, the 
circulation around the bump was always anti-cyclonic. I n  the present case, it was 
always anti-cyclonic for a retrograde (westward) basic flow (4.7), but for a 
prograde (eastward) basic flow it could be cyclonic (5 .5 ) .  

(ii) For the retrograde (westward) basic flows, the effect of P is to limit the 
radial extent of the disturbance to the basic zonal flow. This is in contrast t o  
Ingersoll’s (1969) f-plane solution. The streamline pattern is still upstream- 
downstream symmetric (figure 2 ) ,  however. 
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(iii) For the prograde (eastward) basic flows, an extensive meandering wake 
is found downstream of the bump (figure 4). This wake decays downstream only 
like r-9. Associated with the meander pattern there can be eddies: cyclonic eddies 
to the downstream poleward side and anti-cyclonic to the downstream equator- 
ward side, and also accelerated jet-like regions. 

(iv) The upstream-downstream asymmetry of the prograde solutions leads to 
a drag force on the bump: a wave drag. This can be calculated explicitly ((5.6), 
figure 6) .  

(v) Some simple experiments were done, which confirm the general character 
of the prograde flow solution (figures 8 (plates 1, 2) and 9 (plate 3)), and in 
particular the validity of the no upstream wave condition used in the solutions. 
For retrograde flow, streamlines similar to the theory are sometimes seen; but 
at other times the latitudinal band a t  the bump blocks, and time-dependent 
vortex shedding is observed. 

These phenomena also occur in the full two-layer solutions: so long as the 
velocities in each layer are in the same direction, the primary effect of the stratifi- 
cation is to attenuate the Taylor-column strength in the upper layer (figure 7). 
This bottom-trapping, which for S-tco becomes 100 yo, is the two-layer analogy 
of Hogg’s (1973) Taylor ‘cones’ for a linearly stratified f-plane system. 

The amplitude of the meandering wake in the prograde flow example shown 
in figure 7 is nearly the same in the two layers. I n  $ 5  this was shown to be a 
general conclusion, so long as b/S was 5 1. 

When the basic flow was a counter-flow, the situation was found to be more 
complicated ( $ 3). Even for b = 0, the solutions had a wavy character: a stationary 
baroclinic wave forced by the bump. I n  3 3 it was shown that, for non-zero b, two 
wavy modes can exist; and the appropriate boundary conditions for each mode 
were determined (see discussion of (3.4) and (3.5)).  It is also possible for two 
wavy modes to occur when both layers are prograde (tables 3,  3). 

Hogg (1973) summarized the little, mostly indirect, evidence for Taylor 
columns. The evidence is of two types. The first type is observations of anti- 
cyclonic vorticity above seamounts, either direct, by neutrally buoyant float 
tracks, or indirect deduction from detailed hydrographic stations. The second 
type is a large body of indirect geological evidence: asymmetric sediment distribu- 
tions, current scouring, and moats observed on and near seamounts. The reader 
is referred to Hogg’s paper for the specific references. The best plan of attack for 
future attempts at observation is probably the tracking of an array of surface 
drifters and/or neutrally buoyant floats, preferably in a region with a relatively 
smooth approaching flow (i.e. not near the Gulf Stream) and with a single 
dominant bottom topographic feature, well isolated from other large bumps. 

The most familiar example of a large-scale meandering current is the Gulf 
Stream. The forcing due to the New England Seamount Chain may play a role in 
these meanders, although the inherent instabilities and time dependence of the 
Gulf Stream render it impossible to make a strong statement. Quite often 
(Fuglister 1963; Fuglister & Voorhis 1965; Hansen 1970; Fuglister 1972; 
Robinson, Luyten & Fuglister 1974), the particular segment of the Gulf Stream 
path that crosses the Chain has anticyclonic curvature. There is also an observa- 
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tion of the formation of a cyclonic eddy (‘ Edgar ’) downstream from one of these 
anti-cyclonic crossings of the ridge (Fuglister & Worthington 1951). 

Another possible example of meandering downstresm from a topographic 
feature was described by Gordon & Bye (1978)) who, in discussing a chart of 
dynamic topography of the Southern Ocean, pointed out that there are two 
regions where the contours meander. One is downstream from the Campbell 
Plateau and the other downstream from the USARP fracture zone. They find 
that the observed wavelength, combined with the stationary Rossby wave dis- 
persion relation, predicts a flow velocity consistent with the observed flow speeds. 
The present theory shows the role the bottom topography plays in forcing these 
meanders. Indeed, the dynamic topography they show a t  the tip of the Campbell 
Plateau and over the USARP fracture zone shows anti-cyclonic curvature. 
Owing to the large scales involved, and the logistic difficulties, further 
observations here might be best made by satellite-tracked surface drifters. 

I n  tj 5, the wave drag for the two-layer example illustrated in figure 7 was com- 
puted to be nearly 1016 dynes, The wave drag associated with prograde flows 
interacting with large-scale topography is thus big enough to contribute to the 
overall momentum balance of the current system. Munk & Palmen (1951) noted 
that the wind stress driving the Antarctic Circumpolar Current is of the order of 
1017 dynes. A model current, which balances wind stress against only lateral 
and/or bottom friction, requires rather unpleasantly high eddy-viscosity coeffi- 
cients. Munk & Palmen (1951) found the necessary horizontal coefficient to be 
of the order of 1O1O om2 s-l. They suggested that a combination of bottom friction 
and ‘mountain effect’ (i.e. pressure drag of the kind described in tj 5) might be 
a more reasonable model. More recent theoretical work has somewhat reduced 
the viscosities needed for a friction-controlled model : Gill (1968) found that either 
~ O S C ~ ~ S - ~  for a lateral coefficient or 103cm2 for a vertical coefficient yielded 
reasonable current magnitudes. The dynes mentioned above suggests that 
Munk & Palmen were correct, and that any future theoretical modelling projects 
for the Antarctic Circumpolar Current should include some form of mesoscale 
topography, rather than artificially large eddy coefficients. 

This work was started while the author was a Fellow of the 1972 Summer Study 
Program in Geophysical Fluid Dynamics a t  the Woods Hole Oceanographic 
Institution. This part of the work was supported by the Office of Naval Research. 
Discussions with, and encouragement given by, the program staff, especially 
Dr Andrew Ingersoll, were much appreciated. Further theoretical work was done 
a t  Case Western Reserve University, supported by NASA grant NGL-36-033-064. 
The theoretical work was finished, and the experimental work done, at the Woods 
Hole Oceanographic Institution, supported by NSF grant GA-35447. This paper 
is contribution no. 3376 of the Woods Hole Oceanographic Institution. 
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